
 Computer Graphics

 Lecture 7

Output primitives:

A picture can be described in several ways. Assuming we have a raster
display, a picture is completely specified by the set of intensities for the
pixel positions in the display. At the other extreme, we can describe a
picture as a set of complex objects, such as trees and terrain or furniture
and walls, positioned at specified coordinate locations within the scene.
Shapes and colours of the objects can be described internally with pixel
arrays or with sets of basic geometric structures, such as straight line
segments and polygon colour areas. The scene is then displayed either by
loading the pixel arrays into the frame buffer or by scan converting the
basic geometric-structure specifications into pixel patterns. Typically,
graphics programming packages provide functions to describe a scene in
terms of these basic geometric structures, referred to as output primitives,
and to group sets of output primitives into more complex structures. Each
output primitive is specified with input coordinate data and other
information about the way that object is to be displayed. Points and
straight line segments are the simplest geometric components of pictures.
Additional output primitives that can be used to construct a picture include
circles and other conic sections, quadric surfaces, spline curves and
surfaces, polygon colour areas, and character strings. We begin our
discussion of picture-generation procedures by examining device-level
algorithms for displaying two-dimensional output primitives, with
particular emphasis on scan-conversion methods for raster graphics
systems.

POINTS AND LINES: Point plotting is accomplished by converting a single
coordinate position furnished by an application program into appropriate
operations for the output device in use. With a CRT monitor, for example,
the electron beam is turned on to illuminate the screen phosphor at the
selected location. How the electron beam is positioned depends on the
display technology. A random-scan (vector) system stores point-plotting
instructions in the display list, and coordinate values in these instructions
are converted to deflection voltages that position the electron beam at the
screen locations to be plotted during each refresh cycle. For a black-and-

white raster system, on the other hand, a point is plotted by setting the bit
value corresponding to a specified screen position within the frame buffer
to 1. Then, as the electron beam sweeps across each horizontal scan line,
it emits a burst of electrons (plots a point) whenever a value of 1 is
encountered in the frame buffer. With an RGB system, the frame buffer is
loaded with the colour codes for the intensities that are to be displayed at
the screen pixel positions.
Line drawing is accomplished by calculating intermediate positions along
the line path between two specified endpoint positions. An output device
is then directed to fill in these positions between the endpoints. For analog
devices, such as a vector pen plotter or a random-scan display, a straight
line can be drawn smoothly from one endpoint to the other. Linearly
varying horizontal and vertical deflection voltages are generated that are
proportional to the required changes in the x and y directions to produce
the smooth line.
Digital devices display a straight line segment by plotting discrete points
between the two endpoints. Discrete coordinate positions along the line
path are calculated from the equation of the line. For a raster video display,
the line colour (intensity) is then loaded into the frame buffer at the
corresponding pixel coordinates. Reading from the frame buffer, the video
controller then "plots" the screen pixels. Screen locations are referenced
with integer values, so plotted positions may only approximate actual Line
positions between two specified endpoints. A computed line position of
(10.48,20.51), for example, would be converted to pixel position (10,21).
This rounding of coordinate values to integers causes lines to be displayed
with a stairstep appearance ("the jaggies"), as represented in Fig 2-14. The
characteristic stairstep shape of raster lines is particularly noticeable on
systems with low resolution, and we can improve their appearance
somewhat by displaying them on high-resolution systems. More effective
techniques for smoothing raster lines are based on adjusting pixel
intensities along the line paths.

 Fig 2-14(Stairstep effect produced when a line is generated as a series of pixel positions)

For the raster-graphics device-level algorithms, object positions are
specified directly in integer device coordinates. For the time being, we will
assume that pixel positions are referenced according to scan-line number
and column number (pixel position across a scan line). This addressing
scheme is illustrated in Fig. 2-15. Scan lines are numbered consecutively
from 0, starting at the bottom of the screen; and pixel columns are
numbered from 0, left to right across each scan line.
To load a specified colour into the frame buffer at a position corresponding
to column x along scan line y, we will assume we have available a low-level
procedure of the form

 setPixel(x,y)

 Fig 2-15(Pixe1 positions referenced by scan-line number and column number)

We sometimes will also want to be able to retrieve the current frame-
buffer intensity setting for a specified location. We accomplish this with
the low-level function

 getPixel(x,y)

LINE-DRAWING ALGORITHMS:

The Cartesian slope-intercept equation for a straight line is

 y = m. x + b (2.1)
With m representing the slope of the line and b as they intercept. Given
that the two endpoints of a line segment are specified at positions (x1,
y1) and (x2, y2) as shown in Fig. 2-16, we can determine values for the
slope m and y intercept b with the following calculations

 Fig 2-16(Line path between endpoint positions (x1, y1) and (x2, y2))

 m = (y2-y1) / (x2-x1) (2.2)

 b = y1 – m. x1 (2.3)

Algorithms for displaying straight lines are based on the line equation 2.1
and the calculations given in Eqs. 2.2 and 2.3
For any given x interval ∆x along a line, we can compute the corresponding
y interval ∆y from Eq 3.2 as

 ∆y = m ∆x (2.4)

Similarly, we can obtain the x interval ∆x corresponding to a specified ∆y
as
 ∆x = ∆y / m (2.5)

These equations form the basis for determining deflection voltages in
analog devices. For lines with slope magnitudes I m I < 1, ∆x can be set
proportional to a small horizontal deflection voltage and the
corresponding vertical deflection is then set proportional to ∆y as
calculated from Eq. 2.4. For lines whose slopes have magnitudes I m I > 1,
∆y can be set proportional to a small vertical deflection voltage with the
corresponding horizontal deflection voltage set proportional to ∆x,
calculated from Eq. 2.5. For lines with m = 1, ∆x = ∆y and the horizontal and
vertical deflections voltages are equal. In each case, a smooth line with
slope m is generated between the specified endpoints.

On raster systems, lines are plotted with pixels, and step sizes in the
horizontal and vertical directions are constrained by pixel separations.
That is, we must "sample" a line at discrete positions and determine the
nearest pixel to the line at each sampled position. This scan conversion

process for straight lines is illustrated in Fig. 2-17, for a near horizontal
line with discrete sample positions along the x axis.

 Fig 2-17(Straight line segment with five sampling positions along the x-axis between x, and x2)

